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A two-dimensional map is derived from the model of a curved Fermi-Pasta-Ulam �FPU� chain which
supports exact discrete breather �DB� solutions with frequencies lying outside the linear spectrum or phonon
band. The stability of the equilibrium points of the two-dimensional map is examined and the nature of the
trajectories is numerically studied. The map displays regular orbits and commensurate states in the phase space
for different choices of curvature strength of the FPU chain. The homoclinic map orbits are attributed to the
stationary DB solutions of the lattice system.
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The importance of discrete breathers �DBs� or intrinsic
localized modes in nonlinear lattices has been emphasized in
the modeling of biopolymers and conducting polymers dur-
ing recent years. It is suggested that these nonlinear localized
excitations may provide a possible physical mechanism for
energy storage and transport as well as for structural proper-
ties of biopolymers �1�, charge transport in conducting poly-
mers �2�. They may play relevant roles in energy trapping
and other dynamical properties �3� such as folding in
polypeptide chains and targeted breaking of chemical bonds
in molecular chains �4�. Conformational changes may occur
in response to the excitation of DBs and therefore may prove
to be crucial in the kinetics of conformational phase transi-
tions of semiflexible biopolymers �3�. It thus becomes nec-
essary to find out whether such modes are sturdy against
changes in the geometrical curvatures or structures of the
polymer chains.

Exact analytic solutions in the form of static DBs have
been presented recently for a model of a curved Fermi-Pasta-
Ulam �FPU� chain confined to a two-dimensional �2D� plane
�5�. Since the model involves a quadratic �apart from quartic�
nearest-neighbor interaction, it is not free from linear disper-
sion. Due to phonon resonances, the strong localization of
the nonlinear excitations may be destroyed �6�. Therefore it
becomes important to show that localization resulting from
nonlinear dispersion can be a robust property even in the
presence of linear dispersion in the curved chain.

The FPU chain considered in �5� is an infinite chain con-
sisting of unit masses lying in the x-y plane and coupled to
their nearest neighbors by a potential which is minimized
whenever the nearest neighbors lie the lattice constant ‘’a”
apart. A relative distance is defined between the nearest
neighbors as

zn =
1

a
��xn − xn−1� + i�yn − yn−1�� .

The potential �P� and kinetic �T� energies of the planar chain
are respectively given by

P =
1

2
�rn − 1�2 +

�

4
�rn − 1�4, T =

1

2
�ẋn

2 + ẏn
2� ,

where rn= �zn � = 1
a ��xn−xn−1�2+ �yn−yn−1�2�1 / 2 and � denotes

the quartic anharmonicity parameter. A transformation to the

polar coordinate representation simplifies the calculations
and accordingly zn=rnei�n is used. This leads to

xn − xn−1 = arncos��n�, yn − yn−1 = arnsin��n� .

It is easily seen that only the kinetic energy depends on the
angles �n between adjacent links in the chain and not the
potential energy. The total energy E= P+T is therefore de-
pendent on the angles. While the links of the curved chain
resist compression and stretching, it is rigid in nature.

Having briefly described the system under consideration,
the focus is now on the linear stability analysis of DBs ex-
isting in the system. The present paper is aimed at investi-
gating the stability of possible orbits of the system. For this,
the equation of motion in plane polar coordinates �rn ,�n�
governing the displacement field dynamics of the curved
chain is taken from �5� and is given by

�̈n = gn+1cos��n+1 − �n� + gn−1cos��n−1 − �n� − 2gn, �1�

where �n= �rn−1� and gn=�n+��n
3. This is Eq. �12� in �5�,

and Eq. �13� therein simply expresses the generalized forces
in terms of the appropriate acting torques on the chain which
is treated as a constraint condition here, since calculating
these forces is not the concern of the present study. Equation
�1� contains all the dynamics of the anisotropic
��n-dependent� chain, the geometry of which is time inde-
pendent and defined as

cos��n+1 − �n� =
�

�1 + �1�n+1
2 �

,

cos��n−1 − �n� =
�

�1 + �1�n−1
2 �

, �2�

like in �5�, where �1= 3
4�. The curvature of the chain depends

only parametrically on �. In other words, the chain geometry
is only inhomogeneous �n-dependent� in the sense that it is
determined by the lattice displacement pattern. Here �n is the
spatial profile of the stationary DB mode. When all local
angles are equal to the same constant nonzero value �n=�0,
the modified FPU model represented by Eq. �1� reduces to
the one-dimensional FPU chain rotated through an angle �0

wrt a horizontal axis. Motion in a third dimension �perpen-
dicular to the chain� is ignored here in the model to reduce
its complexity, which in no way blurs the essential results.
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Such a nonlinear chain embedded in a plane can describe
polymers in general. The dynamics of the chain taken into
consideration is fixed in time and it evolves only by chang-
ing the lengths of its links, i.e., moves with the orientations
of the links altering with the sites n to accommodate the
expansion and contraction of the links. This can be viewed as
a conformational flexibility of the chain arising in response
to the excitation of nonlinear localized modes.

The existing DB solutions given by the ansatz �n
=�ncos��t� are allowed for the particular chain geometry �2�
within the framework of the rotating wave approximation
�RWA�. RWA means considering a monochromatic anhar-
monic oscillation and neglecting all the higher harmonics.
The equation in the amplitudes �n thus obtained after substi-
tuting the DB ansatz and Eq. �2� in Eq. �1� is

− �2�n = ��n+1 + ��n−1 − 2��n + �1�n
3� , �3�

which supports odd and even-parity DB modes whose fre-
quencies lie well above the linear spectrum band �5�. The
dynamics of the system evolves in space, not in time. Equa-
tion �3� is of prime interest and can be cast into a 2D map for
a mapping stability analysis.

We define a map on phase space and search for fixed
points of this map. An explicit construction of a 2D map is
possible by introducing the relation �n+1= ��n+1−�n� that
can be solved uniquely for �n+1 and �n+1 in terms of �n and
�n. The map determines the displacement of the nth mass
“�n” at all subsequent sites along the curved FPU chain for a
choice of the model parameter “�”. For a chosen arbitrary
value ��0, �0� near the fixed point of the map and a fixed
strength of the coupling constant, the map illustrates the
phase portrait of the lattice system.

It is convenient to analyze the stability aspects of the
static DBs associated with the given system from the view-
point of mapping orbit stability �7�. The real-valued equation
�3� is thus investigated as a map where the lattice index n
plays the role of discrete time. The corresponding map M is
given as

�n+1 = �n − a�n + b�n
3,

�n+1 = �n + �n+1, �4�

where a= 1
� ��2+2��−1�� and b= 3�

2� . To examine the struc-
tural stability of the stationary DBs with frequencies lying
above the linear band, studying the stability of the fixed
points and associated homoclinic orbits of M is sufficient.

As is apparent from the map M, the origin �0,0� repre-
sents a fixed point of the map. The other fixed points are
located at ���a

b ,0� which exist if a	0, b	0 ��	0� and
a
0, b
0 ��
0� for the curvature parameter �	0. In the
following discussion, the first case is taken into consider-
ation, i.e., the focus is on localized states whose frequencies
lie above the plane wave spectrum �	�m for a “hard” non-
linearity �	0 where “�m” is the maximum plane wave fre-
quency �5�. The stability of the fixed points is governed by
their values for the corresponding residues:

� =
1

4
�2 − Tr�DM�� , �5�

where the tangent map DM is determined by

DM = �1 wn

1 1 + wn
� , �6�

with wn= �−a+3b�n
2� . It is clear from Eq. �6� that M is an

area-preserving map. The value of residue at fixed point �n

=0 is �= a
4 and that at fixed points �n= ��a

b is �=− a
2 . For

DB frequency fulfilling the nonresonance condition �	�m
�8�, the map parameter a	0. Hence for the fixed points
���a

b ,0� the residue is �
0 which therefore lose stability.
However, for the fixed point �0,0� the value is �	0 and
hence the system �4� is studied by plotting the map orbits
initialized near the origin, simulated over 1000 lattice sites. It
is further noted that the highest frequency which the DB can
attain above the harmonic spectrum for a particular curvature
of the chain increases with increasing �, in a manner shown
in Fig. 1. For �=0, �2=�m

2 =2 represents the upper edge or
cutoff of the linear band and is readily seen in the plot. For
the present study, the two values of �2 corresponding to �
=0.1 and �=0.3 are chosen from the figure without losing
generality.

The iterates of M are obtained with some chosen sets of
initial conditions and �=1 is fixed for convenience. The sta-
bility of a fixed point is determined by the eigenvalues of the
tangent map DM. For the map origin �0,0�, �Tr�DM� � 	2
makes the eigenvalues real and reciprocals representing
growing and decaying solutions �9�. Thus the equilibrium
point �0,0� is an unstable hyperbolic having one-
dimensional stable and unstable manifolds in the 2D phase
space, and is connected to itself by a homoclinic orbit cre-
ated by the �invariant� unstable and stable manifolds. The
value of residue at the zero equilibrium point is �	1 for the
set of chosen parameters 0
��1 and �	�m, and it is
converted into an unstable hyperbolic point with reflection.
The map orbits are located on the line �n=−�n. Therefore
the homoclinic map orbit of the curved FPU chain supports
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FIG. 1. DB frequency as a function of the curvature

parameter.
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DBs which have frequencies existing above the linear spec-
trum, and have alternating signs for adjacent amplitudes, i.e.,
sgn��n+1�=−sgn��n� as a characteristic feature. Such DBs
are said to have a staggered form that is, neighboring par-
ticles in the chain oscillate out of phase. This striking feature
has been revealed in the previous study �5� of the same
model for both odd and even-parity DB modes.

The �n versus �n plot for �=0.1 ��2=2.23� shown in Fig.
2 displays regular orbits and a chain of islands �high-order
commensurate states� for different chosen initial conditions.
When � value is increased to 0.3 ��2=2.72�, the lattice dis-
placement patterns show similar behavior as can be seen
from Fig. 3. For even higher values of � �the range consid-
ered in Fig. 1�, the map orbits still remain periodic. One can
find a host of similar trajectories corresponding to such lo-
calized states for different positive nonlinearity strengths.

It is evident that localized stationary states correspond to
map orbits lying on the stable and unstable manifolds of
hyperbolic equilibrium. In particular, if the map origin rep-
resents an unstable hyperbolic equilibrium point, exponential
DBs in the curved FPU chain are excitable. Each homoclinic
orbit “�n” is attributed to a localized state pinned by the
lattice chain. Figure 4 shows the spatial profiles of stationary
DBs of the FPU chain with its two curvature values ��

=0.1,0.3�, the real-valued amplitudes being obtained from
the homoclinic map orbits. It is observed that the curved
FPU chain with smaller � values bears stationary DB states
of absolute amplitudes smaller than the ones with larger �
values. In the latter case, the decay of the DB tails is less
rapid which is clearly seen from Fig. 4. The extent of local-
ization thus changes with changing � values, i.e., for smaller
� values the DBs are intensely localized. This result agrees
with that obtained in �5� for the same � values. Thus the
stationary DBs are robust under changes in curvature
strengths of the chain. They adapt to the curvature change to
sustain themselves in the chain by changing their amplitudes
and hence, total energies.

In this paper, the map approach for the construction of
sturdy DB states in a curved FPU chain with nearest-
neighbor interaction is presented. A similar brief discussion
can be found for next-nearest-neighbor interaction in the
Discrete Nonlinear Schrodinger �DNLS� lattice in �10�. Be-
yond this, for a longer range of interaction, the map approach
can be invoked by considering a higher dimensional map.

Generally stable stationary localized states are related to
homoclinic and heteroclinic orbits of the corresponding map
interpreting the system, even though there exist neighboring
map orbits that are strongly chaotic, the reason being the
dependence of localized states on the structural stability of
orbits which are homoclinic or heteroclinic to unstable hy-
perbolic fixed points. Based on this, the stability properties
of the DB modes in the curved FPU chain are considered
from the perspective of the corresponding map orbit stability.
In summary, the results obtained here show that in the case
of an unstable hyperbolic equilibrium point of the 2D map,
the construction of exact DB solutions can be achieved. The
DB amplitudes grow and the DB widths diminish with
changing curvature strengths of the FPU chain. Such spon-
taneous adaptation to the degree of localization is the inher-
ent mechanism of the lattice system to maintain its localized
structures and to protect them against dispersion. The nu-
merical iterates of the 2D map display periodic orbits and a
great number of commensurate states �islands�. Hence one
can conclude that there is no breakdown of the DB states
which may have been caused via the mechanism of reso-
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FIG. 2. �n vs �n plot for �=0.1.
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FIG. 3. �n vs �n plot for �=0.3.
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nances with linear coupling terms, and this accounts for
longer lifetimes of DBs admitted by the curved FPU chain.
In view of the localization properties of polymer chains, the
curved FPU chain can serve as a minimal model to achieve

states with excitation patterns of different amplitude heights
and localization strengths.
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